Always private
DuckDuckGo never tracks your searches.
Learn More
You can hide this reminder in Search Settings
All regions
Argentina
Australia
Austria
Belgium (fr)
Belgium (nl)
Brazil
Bulgaria
Canada (en)
Canada (fr)
Catalonia
Chile
China
Colombia
Croatia
Czech Republic
Denmark
Estonia
Finland
France
Germany
Greece
Hong Kong
Hungary
Iceland
India (en)
Indonesia (en)
Ireland
Israel (en)
Italy
Japan
Korea
Latvia
Lithuania
Malaysia (en)
Mexico
Netherlands
New Zealand
Norway
Pakistan (en)
Peru
Philippines (en)
Poland
Portugal
Romania
Russia
Saudi Arabia
Singapore
Slovakia
Slovenia
South Africa
Spain (ca)
Spain (es)
Sweden
Switzerland (de)
Switzerland (fr)
Taiwan
Thailand (en)
Turkey
Ukraine
United Kingdom
US (English)
US (Spanish)
Vietnam (en)
Safe search: moderate
Strict
Moderate
Off
Any time
Any time
Past day
Past week
Past month
Past year
  1. Luzin space

    In mathematics, a Luzin space, named for N. N. Luzin, is an uncountable topological T1 space without isolated points in which every nowhere-dense subset is countable. There are many minor variations of this definition in use: the T1 condition can be replaced by T2 or T3, and some authors allow a countable or even arbitrary number of isolated points. Wikipedia

    Was this helpful?
  2. en.wikipedia.org

    Nikolai Nikolayevich Luzin (also spelled Lusin; Russian: Никола́й Никола́евич Лу́зин, IPA: [nʲɪkɐˈlaj nʲɪkɐˈlajɪvʲɪtɕ ˈluzʲɪn] ⓘ; 9 December 1883 - 28 February 1950) was a Soviet and Russian mathematician known for his work in descriptive set theory and aspects of mathematical analysis with strong ...
  3. en.wikipedia.org

    In the mathematical field of mathematical analysis, Lusin's theorem (or Luzin's theorem, named for Nikolai Luzin) or Lusin's criterion states that an almost-everywhere finite function is measurable if and only if it is a continuous function on nearly all its domain. In the informal formulation of J. E. Littlewood, "every measurable function is nearly continuous".
  4. encyclopediaofmath.org

    The existence of a Luzin space on the real line follows from the continuum hypothesis. From the negation of the continuum hypothesis and Martin's axiom ... N.N. [N.N. Luzin] Lusin, "Sur un problème de M. Baire" C.R. Acad. Sci. Paris, 158 (1914) pp. 1258-1261 [2]
  5. scielo.org.co

    First, it sets up the historical problem, introducing four existential categories, and then it shows Luzin' s position and reframes it in terms of Cavaillès and Gardies' theory of thematization. ... Lusin N., "Sur un problème de M. Baire", C. R. Math. Acad. Sci. Paris 158 (1914), 1258 - 1261. ...
  6. sciencedirect.com

    Juste avant la révolution de 1917, quatre articles, écrits par des participants aux conférences sur l'anayse de N. Lusin a l'Université de Moscou, ont paru dans les Comptes rendus de l'Académie des Sciences de Paris. La publication de ces articles--écrits par A. Khintchine, D. Menchoff, P. Alexandroff, et M. Souslin--et la monographie de Lusin, l'Intégrale et les séries ...
  7. iopscience.iop.org

    d) Luzin N. N. 1925 Sur les ensembles non mesurables B et l'emploi de la diagonale de Cantor C. R. Acad. Sci., Paris 181 95-96. Google Scholar e) Luzin N. N. 1925 Sur le problème de M. Emile Borel et la methode de résolvantes C. R. Acad. Sci., Paris 181 279-281. Google Scholar Luzin N. N. 1958 Sobranie sochinenii (Collected works) vol II ...
  8. iopscience.iop.org

    This paper is based on the author's lecture "N.N. Luzin and the descriptive theory of sets" delivered on 13 December 1983 at the meeting of the Moscow Mathematical Society dedicated to the centenary of Luzin's birth. The paper is aimed at a wide readership and is regarded by the author as one of the means of introducing a reader to the sphere ...

    Can’t find what you’re looking for?

    Help us improve DuckDuckGo searches with your feedback

Custom date rangeX